spring boot使用sharding jdbc的配置方式
|
本文介绍了spring boot使用sharding jdbc的配置方式,分享给大家,具体如下: 说明 要排除DataSourceAutoConfiguration,否则多数据源无法配置
@SpringBootApplication
@EnableAutoConfiguration(exclude={DataSourceAutoConfiguration.class})
public class Application {
public static void main(String[] args) {
SpringApplication.run(Application.class,args);
}
}
配置的多个数据源交给sharding-jdbc管理,sharding-jdbc创建一个DataSource数据源提供给mybatis使用 官方文档:http://shardingjdbc.io/index_zh.html 步骤 配置多个数据源,数据源的名称最好要有一定的规则,方便配置分库的计算规则
@Bean(initMethod="init",destroyMethod="close",name="dataSource0")
@ConfigurationProperties(prefix = "spring.datasource")
public DataSource dataSource0(){
return new DruidDataSource();
}
@Bean(initMethod="init",name="dataSource1")
@ConfigurationProperties(prefix = "spring.datasource2")
public DataSource dataSource1(){
return new DruidDataSource();
}
配置数据源规则,即将多个数据源交给sharding-jdbc管理,并且可以设置默认的数据源,当表没有配置分库规则时会使用默认的数据源
@Bean
public DataSourceRule dataSourceRule(@Qualifier("dataSource0") DataSource dataSource0,@Qualifier("dataSource1") DataSource dataSource1){
Map<String,DataSource> dataSourceMap = new HashMap<>();
dataSourceMap.put("dataSource0",dataSource0);
dataSourceMap.put("dataSource1",dataSource1);
return new DataSourceRule(dataSourceMap,"dataSource0");
}
配置数据源策略和表策略,具体策略需要自己实现
@Bean
public ShardingRule shardingRule(DataSourceRule dataSourceRule){
//表策略
TableRule orderTableRule = TableRule.builder("t_order")
.actualTables(Arrays.asList("t_order_0","t_order_1"))
.tableShardingStrategy(new TableShardingStrategy("order_id",new ModuloTableShardingAlgorithm()))
.dataSourceRule(dataSourceRule)
.build();
TableRule orderItemTableRule = TableRule.builder("t_order_item")
.actualTables(Arrays.asList("t_order_item_0","t_order_item_1"))
.tableShardingStrategy(new TableShardingStrategy("order_id",new ModuloTableShardingAlgorithm()))
.dataSourceRule(dataSourceRule)
.build();
//绑定表策略,在查询时会使用主表策略计算路由的数据源,因此需要约定绑定表策略的表的规则需要一致,可以一定程度提高效率
List<BindingTableRule> bindingTableRules = new ArrayList<BindingTableRule>();
bindingTableRules.add(new BindingTableRule(Arrays.asList(orderTableRule,orderItemTableRule)));
return ShardingRule.builder()
.dataSourceRule(dataSourceRule)
.tableRules(Arrays.asList(orderTableRule,orderItemTableRule))
.bindingTableRules(bindingTableRules)
.databaseShardingStrategy(new DatabaseShardingStrategy("user_id",new ModuloDatabaseShardingAlgorithm()))
.tableShardingStrategy(new TableShardingStrategy("order_id",new ModuloTableShardingAlgorithm()))
.build();
}
创建sharding-jdbc的数据源DataSource,MybatisAutoConfiguration会使用此数据源
@Bean("dataSource")
public DataSource shardingDataSource(ShardingRule shardingRule){
return ShardingDataSourceFactory.createDataSource(shardingRule);
}
需要手动配置事务管理器(原因未知)
//需要手动声明配置事务
@Bean
public DataSourceTransactionManager transactitonManager(@Qualifier("dataSource") DataSource dataSource){
return new DataSourceTransactionManager(dataSource);
}
分库策略的简单实现,接口:DatabaseShardingAlgorithm
import java.util.Collection;
import java.util.LinkedHashSet;
import com.dangdang.ddframe.rdb.sharding.api.ShardingValue;
import com.dangdang.ddframe.rdb.sharding.api.strategy.database.SingleKeyDatabaseShardingAlgorithm;
import com.google.common.collect.Range;
/**
* Created by fuwei.deng on 2017年5月11日.
*/
public class ModuloDatabaseShardingAlgorithm implements SingleKeyDatabaseShardingAlgorithm<Long> {
@Override
public String doEqualSharding(Collection<String> databaseNames,ShardingValue<Long> shardingValue) {
for (String each : databaseNames) {
if (each.endsWith(shardingValue.getValue() % 2 + "")) {
return each;
}
}
throw new IllegalArgumentException();
}
@Override
public Collection<String> doInSharding(Collection<String> databaseNames,ShardingValue<Long> shardingValue) {
Collection<String> result = new LinkedHashSet<>(databaseNames.size());
for (Long value : shardingValue.getValues()) {
for (String tableName : databaseNames) {
if (tableName.endsWith(value % 2 + "")) {
result.add(tableName);
}
}
}
return result;
}
@Override
public Collection<String> doBetweenSharding(Collection<String> databaseNames,ShardingValue<Long> shardingValue) {
Collection<String> result = new LinkedHashSet<>(databaseNames.size());
Range<Long> range = (Range<Long>) shardingValue.getValueRange();
for (Long i = range.lowerEndpoint(); i <= range.upperEndpoint(); i++) {
for (String each : databaseNames) {
if (each.endsWith(i % 2 + "")) {
result.add(each);
}
}
}
return result;
}
}
分表策略的基本实现,接口:TableShardingAlgorithm
import java.util.Collection;
import java.util.LinkedHashSet;
import com.dangdang.ddframe.rdb.sharding.api.ShardingValue;
import com.dangdang.ddframe.rdb.sharding.api.strategy.table.SingleKeyTableShardingAlgorithm;
import com.google.common.collect.Range;
/**
* Created by fuwei.deng on 2017年5月11日.
*/
public class ModuloTableShardingAlgorithm implements SingleKeyTableShardingAlgorithm<Long> {
@Override
public String doEqualSharding(Collection<String> tableNames,ShardingValue<Long> shardingValue) {
for (String each : tableNames) {
if (each.endsWith(shardingValue.getValue() % 2 + "")) {
return each;
}
}
throw new IllegalArgumentException();
}
@Override
public Collection<String> doInSharding(Collection<String> tableNames,ShardingValue<Long> shardingValue) {
Collection<String> result = new LinkedHashSet<>(tableNames.size());
for (Long value : shardingValue.getValues()) {
for (String tableName : tableNames) {
if (tableName.endsWith(value % 2 + "")) {
result.add(tableName);
}
}
}
return result;
}
@Override
public Collection<String> doBetweenSharding(Collection<String> tableNames,ShardingValue<Long> shardingValue) {
Collection<String> result = new LinkedHashSet<>(tableNames.size());
Range<Long> range = (Range<Long>) shardingValue.getValueRange();
for (Long i = range.lowerEndpoint(); i <= range.upperEndpoint(); i++) {
for (String each : tableNames) {
if (each.endsWith(i % 2 + "")) {
result.add(each);
}
}
}
return result;
}
}
至此,分库分表的功能已经实现 读写分离 读写分离需在创建DataSourceRule之前加一层主从数据源的创建
// 构建读写分离数据源,读写分离数据源实现了DataSource接口,可直接当做数据源处理.
// masterDataSource0,slaveDataSource00,slaveDataSource01等为使用DBCP等连接池配置的真实数据源
DataSource masterSlaveDs0 = MasterSlaveDataSourceFactory.createDataSource("ms_0",masterDataSource0,slaveDataSource01);
DataSource masterSlaveDs1 = MasterSlaveDataSourceFactory.createDataSource("ms_1",masterDataSource1,slaveDataSource11,slaveDataSource11);
// 构建分库分表数据源
Map<String,DataSource> dataSourceMap = new HashMap<>(2);
dataSourceMap.put("ms_0",masterSlaveDs0);
dataSourceMap.put("ms_1",masterSlaveDs1);
// 通过ShardingDataSourceFactory继续创建ShardingDataSource
强制使用主库时 HintManager hintManager = HintManager.getInstance(); hintManager.setMasterRouteOnly(); // 继续JDBC操作 (编辑:安卓应用网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |
