java – Hadoop mapreduce:用于在MapReduce作业中链接映射器的驱动程序
|
我有mapreduce工作:
public static class MapClass extends Mapper<Text,Text,LongWritable> {
@Override
public void map(Text key,Text value,Context context)
throws IOException,InterruptedException {
}
}
我想使用ChainMapper: 1. Job job = new Job(conf,"Job with chained tasks");
2. job.setJarByClass(MapReduce.class);
3. job.setInputFormatClass(TextInputFormat.class);
4. job.setOutputFormatClass(TextOutputFormat.class);
5. FileInputFormat.setInputPaths(job,new Path(InputFile));
6. FileOutputFormat.setOutputPath(job,new Path(OutputFile));
7. JobConf map1 = new JobConf(false);
8. ChainMapper.addMapper(
job,MapClass.class,Text.class,true,map1
);
但它的报告在第8行有一个错误:
解决方法经过大量的“功夫”,我能够使用ChainMapper / ChainReducer.感谢上次评论user864846./**
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License,Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,software
* distributed under the License is distributed on an "AS IS" BASIS,* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package myPKG;
/*
* Ajitsen: Sample program for ChainMapper/ChainReducer. This program is modified version of WordCount example available in Hadoop-0.18.0. Added ChainMapper/ChainReducer and made to works in Hadoop 1.0.2.
*/
import java.io.IOException;
import java.util.Iterator;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.*;
import org.apache.hadoop.mapred.lib.ChainMapper;
import org.apache.hadoop.mapred.lib.ChainReducer;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
public class ChainWordCount extends Configured implements Tool {
public static class Tokenizer extends MapReduceBase
implements Mapper<LongWritable,IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(LongWritable key,OutputCollector<Text,IntWritable> output,Reporter reporter) throws IOException {
String line = value.toString();
System.out.println("Line:"+line);
StringTokenizer itr = new StringTokenizer(line);
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
output.collect(word,one);
}
}
}
public static class UpperCaser extends MapReduceBase
implements Mapper<Text,IntWritable,IntWritable> {
public void map(Text key,IntWritable value,Reporter reporter) throws IOException {
String word = key.toString().toUpperCase();
System.out.println("Upper Case:"+word);
output.collect(new Text(word),value);
}
}
public static class Reduce extends MapReduceBase
implements Reducer<Text,IntWritable> {
public void reduce(Text key,Iterator<IntWritable> values,Reporter reporter) throws IOException {
int sum = 0;
while (values.hasNext()) {
sum += values.next().get();
}
System.out.println("Word:"+key.toString()+"tCount:"+sum);
output.collect(key,new IntWritable(sum));
}
}
static int printUsage() {
System.out.println("wordcount <input> <output>");
ToolRunner.printGenericCommandUsage(System.out);
return -1;
}
public int run(String[] args) throws Exception {
JobConf conf = new JobConf(getConf(),ChainWordCount.class);
conf.setJobName("wordcount");
if (args.length != 2) {
System.out.println("ERROR: Wrong number of parameters: " +
args.length + " instead of 2.");
return printUsage();
}
FileInputFormat.setInputPaths(conf,args[0]);
FileOutputFormat.setOutputPath(conf,new Path(args[1]));
conf.setInputFormat(TextInputFormat.class);
conf.setOutputFormat(TextOutputFormat.class);
JobConf mapAConf = new JobConf(false);
ChainMapper.addMapper(conf,Tokenizer.class,LongWritable.class,IntWritable.class,mapAConf);
JobConf mapBConf = new JobConf(false);
ChainMapper.addMapper(conf,UpperCaser.class,mapBConf);
JobConf reduceConf = new JobConf(false);
ChainReducer.setReducer(conf,Reduce.class,reduceConf);
JobClient.runJob(conf);
return 0;
}
public static void main(String[] args) throws Exception {
int res = ToolRunner.run(new Configuration(),new ChainWordCount(),args);
System.exit(res);
}
}
编辑最新版本(至少从hadoop 2.6),不需要addMapper中的真正标志. (实际上签名有变化抑制它). 所以它会是公正的 JobConf mapAConf = new JobConf(false); ChainMapper.addMapper(conf,mapAConf); (编辑:安卓应用网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |
