如何在小图像上使用Opencv FeatureDetecter
发布时间:2020-05-25 16:38:09 所属栏目:Java 来源:互联网
导读:我在 Java中使用Opencv 3,我试图在其他图像上找到小图像(如25×25像素).但FeatureDetector检测(0,0)大小Mat在小图像上. Mat smallImage = ... FeatureDetector detector = FeatureDetector.create(FeatureDetector.ORB); DescriptorExtractor
|
我在 Java中使用Opencv 3,我试图在其他图像上找到小图像(如25×25像素).但FeatureDetector检测(0,0)大小Mat在小图像上. Mat smallImage = ...
FeatureDetector detector = FeatureDetector.create(FeatureDetector.ORB);
DescriptorExtractor descriptor = DescriptorExtractor.create(DescriptorExtractor.ORB);
DescriptorMatcher matcher = DescriptorMatcher.create(DescriptorMatcher.BRUTEFORCE_HAMMING);
Mat descriptorsSmall = new Mat();
MatOfKeyPoint keyPointsSmall = new MatOfKeyPoint();
detector.detect(smallImage,keyPointsSmall);
descriptor.compute(smallImage,keyPointsSmall,descriptorsSmall);
在这里,我得到keyPointsSmall和descriptorsSmall大小为零,并确保检测不起作用. 但是,如果我在150×150像素的较大图像上尝试此功能,那就可以了. 我在这里添加样品. 并且让它说我们有P字母的模板,所以我们需要在源图像上检测这个P. 好吧,将图像缩放到更高的分辨率对我来说不起作用.那将耗费时间和资源. 除OpenCv之外的其他解决方案对我来说是不可接受的. (例如使用Tesseract) 解决方法用于文本识别的关键点检测不是最佳解决方案,因为您将获得许多看起来相似的功能,并且如果模板非常小,则滑动窗口将不会产生足够的检测到的功能.幸运的是,OpenCV 3在contrib存储库中包含一个文本检测/识别模块:link,其中一个示例取自here,还有许多其他模块可以找到here: /*
* cropped_word_recognition.cpp
*
* A demo program of text recognition in a given cropped word.
* Shows the use of the OCRBeamSearchDecoder class API using the provided default classifier.
*
* Created on: Jul 9,2015
* Author: Lluis Gomez i Bigorda <lgomez AT cvc.uab.es>
*/
#include "opencv2/text.hpp"
#include "opencv2/core/utility.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"
#include <iostream>
using namespace std;
using namespace cv;
using namespace cv::text;
int main(int argc,char* argv[])
{
cout << endl << argv[0] << endl << endl;
cout << "A demo program of Scene Text Character Recognition: " << endl;
cout << "Shows the use of the OCRBeamSearchDecoder::ClassifierCallback class using the Single Layer CNN character classifier described in:" << endl;
cout << "Coates,Adam,et al. "Text detection and character recognition in scene images with unsupervised feature learning." ICDAR 2011." << endl << endl;
Mat image;
if(argc>1)
image = imread(argv[1]);
else
{
cout << " Usage: " << argv[0] << " <input_image>" << endl;
cout << " the input image must contain a single character (e.g. scenetext_char01.jpg)." << endl << endl;
return(0);
}
string vocabulary = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789"; // must have the same order as the clasifier output classes
Ptr<OCRHMMDecoder::ClassifierCallback> ocr = loadOCRHMMClassifierCNN("OCRBeamSearch_CNN_model_data.xml.gz");
double t_r = (double)getTickCount();
vector<int> out_classes;
vector<double> out_confidences;
ocr->eval(image,out_classes,out_confidences);
cout << "OCR output = "" << vocabulary[out_classes[0]] << "" with confidence "
<< out_confidences[0] << ". Evaluated in "
<< ((double)getTickCount() - t_r)*1000/getTickFrequency() << " ms." << endl << endl;
return 0;
} (编辑:安卓应用网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |
