多线程 – Keras Tensorflow – 从多个线程预测时的异常
|
我正在使用keras 2.0.8和tensorflow 1.3.0后端. 我在类init中加载一个模型,然后用它来预测多线程. import tensorflow as tf
from keras import backend as K
from keras.models import load_model
class CNN:
def __init__(self,model_path):
self.cnn_model = load_model(model_path)
self.session = K.get_session()
self.graph = tf.get_default_graph()
def query_cnn(self,data):
X = self.preproccesing(data)
with self.session.as_default():
with self.graph.as_default():
return self.cnn_model.predict(X)
我初始化CNN一次,query_cnn方法从多个线程发生. 我在日志中得到的例外是: File "/home/*/Similarity/CNN.py",line 43,in query_cnn
return self.cnn_model.predict(X)
File "/usr/local/lib/python3.5/dist-packages/keras/models.py",line 913,in predict
return self.model.predict(x,batch_size=batch_size,verbose=verbose)
File "/usr/local/lib/python3.5/dist-packages/keras/engine/training.py",line 1713,in predict
verbose=verbose,steps=steps)
File "/usr/local/lib/python3.5/dist-packages/keras/engine/training.py",line 1269,in _predict_loop
batch_outs = f(ins_batch)
File "/usr/local/lib/python3.5/dist-packages/keras/backend/tensorflow_backend.py",line 2273,in __call__
**self.session_kwargs)
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py",line 895,in run
run_metadata_ptr)
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py",line 1124,in _run
feed_dict_tensor,options,run_metadata)
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py",line 1321,in _do_run
options,line 1340,in _do_call
raise type(e)(node_def,op,message)
tensorflow.python.framework.errors_impl.NotFoundError: PruneForTargets: Some target nodes not found: group_deps
代码在大多数情况下工作正常,它可能是多线程的一些问题. 我该如何解决? 解决方法确保在创建其他线程之前完成图形创建.在图表上调用finalize()可以帮助您. def __init__(self,model_path):
self.cnn_model = load_model(model_path)
self.session = K.get_session()
self.graph = tf.get_default_graph()
self.graph.finalize()
更新1:finalize()将使您的图形为只读,以便可以安全地在多个线程中使用.作为副作用,它将帮助您找到无意的行为,有时还会发现内存泄漏,因为当您尝试修改图形时它会引发异常. 想象一下,你有一个线程可以做一个例如输入的热编码. (坏的例子:) def preprocessing(self,data):
one_hot_data = tf.one_hot(data,depth=self.num_classes)
return self.session.run(one_hot_data)
如果在图表中打印对象数量,您会发现它会随着时间的推移而增加 # amount of nodes in tf graph print(len(list(tf.get_default_graph().as_graph_def().node))) 但是,如果您首先定义图形不是这种情况(略微更好的代码): def preprocessing(self,data):
# run pre-created operation with self.input as placeholder
return self.session.run(self.one_hot_data,feed_dict={self.input: data})
更新2:根据此thread,您需要在执行多线程之前在keras模型上调用model._make_predict_function().
更新的代码: def __init__(self,model_path):
self.cnn_model = load_model(model_path)
self.cnn_model._make_predict_function() # have to initialize before threading
self.session = K.get_session()
self.graph = tf.get_default_graph()
self.graph.finalize() # make graph read-only
更新3:我做了一个预热概念的证明,因为_make_predict_function()似乎没有按预期工作. import tensorflow as tf
from keras.layers import *
from keras.models import *
model = Sequential()
model.add(Dense(256,input_shape=(2,)))
model.add(Dense(1,activation='softmax'))
model.compile(loss='mean_squared_error',optimizer='adam')
model.save("dummymodel")
然后在另一个脚本中我加载了该模型并使其在多个线程上运行 import tensorflow as tf
from keras import backend as K
from keras.models import load_model
import threading as t
import numpy as np
K.clear_session()
class CNN:
def __init__(self,model_path):
self.cnn_model = load_model(model_path)
self.cnn_model.predict(np.array([[0,0]])) # warmup
self.session = K.get_session()
self.graph = tf.get_default_graph()
self.graph.finalize() # finalize
def preproccesing(self,data):
# dummy
return data
def query_cnn(self,data):
X = self.preproccesing(data)
with self.session.as_default():
with self.graph.as_default():
prediction = self.cnn_model.predict(X)
print(prediction)
return prediction
cnn = CNN("dummymodel")
th = t.Thread(target=cnn.query_cnn,kwargs={"data": np.random.random((500,2))})
th2 = t.Thread(target=cnn.query_cnn,2))})
th3 = t.Thread(target=cnn.query_cnn,2))})
th4 = t.Thread(target=cnn.query_cnn,2))})
th5 = t.Thread(target=cnn.query_cnn,2))})
th.start()
th2.start()
th3.start()
th4.start()
th5.start()
th2.join()
th.join()
th3.join()
th5.join()
th4.join()
评论预热和最终确定的线条我能够重现你的第一个问题 (编辑:安卓应用网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |
