在Python上基于Markov链生成伪随机文本的教程
|
首先看一下来自Wolfram的定义 马尔可夫链是随机变量{X_t}的集合(t贯穿0,1,...),给定当前的状态,未来与过去条件独立。 Wikipedia的定义更清楚一点儿 ...马尔可夫链是具有马尔可夫性质的随机过程...[这意味着]状态改变是概率性的,未来的状态仅仅依赖当前的状态。 马尔可夫链具有多种用途,现在让我看一下如何用它生产看起来像模像样的胡言乱语。 算法如下,
import random
class Markov(object):
def __init__(self,open_file):
self.cache = {}
self.open_file = open_file
self.words = self.file_to_words()
self.word_size = len(self.words)
self.database()
def file_to_words(self):
self.open_file.seek(0)
data = self.open_file.read()
words = data.split()
return words
def triples(self):
""" Generates triples from the given data string. So if our string were
"What a lovely day",we'd generate (What,a,lovely) and then
(a,lovely,day).
"""
if len(self.words) < 3:
return
for i in range(len(self.words) - 2):
yield (self.words[i],self.words[i+1],self.words[i+2])
def database(self):
for w1,w2,w3 in self.triples():
key = (w1,w2)
if key in self.cache:
self.cache[key].append(w3)
else:
self.cache[key] = [w3]
def generate_markov_text(self,size=25):
seed = random.randint(0,self.word_size-3)
seed_word,next_word = self.words[seed],self.words[seed+1]
w1,w2 = seed_word,next_word
gen_words = []
for i in xrange(size):
gen_words.append(w1)
w1,w2 = w2,random.choice(self.cache[(w1,w2)])
gen_words.append(w2)
return ' '.join(gen_words)
为了看到一个示例结果,我们从古腾堡计划中拿了沃德豪斯的《My man jeeves》作为文本,示例结果如下。
In [1]: file_ = open('/home/shabda/jeeves.txt')
In [2]: import markovgen
In [3]: markov = markovgen.Markov(file_)
In [4]: markov.generate_markov_text()
Out[4]: 'Can you put a few years of your twin-brother Alfred,who was apt to rally round a bit. I should strongly advocate
the blue with milk'
[如果想执行这个例子,请下载jeeves.txt和markovgen.py
这是一个示例文本。 复制代码 代码如下:"The quick brown fox jumps over the brown fox who is slow jumps over the brown fox who is dead." 这个文本对应的语料库像这样,
{('The','quick'): ['brown'],('brown','fox'): ['jumps','who','who'],('fox','jumps'): ['over'],'who'): ['is','is'],('is','slow'): ['jumps'],('jumps','over'): ['the','the'],('over','the'): ['brown','brown'],('quick','brown'): ['fox'],('slow',('the','brown'): ['fox','fox'],('who','is'): ['slow','dead.']}
现在如果我们从"brown fox"开始,接下来的单词可以是"jumps"或者"who"。如果我们选择"jumps",然后当前的状态就变成了"fox jumps",再接下的单词就是"over",之后依此类推。 提示
(编辑:安卓应用网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |
