加入收藏 | 设为首页 | 会员中心 | 我要投稿 安卓应用网 (https://www.0791zz.com/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 编程开发 > Python > 正文

python sort、sorted高级排序技巧

发布时间:2020-05-24 05:54:10 所属栏目:Python 来源:互联网
导读:Pythonlist内置sort()方法用来排序,也可以用python内置的全局sorted()方法来对可迭代的序列排序生成新的序列。

Python list内置sort()方法用来排序,也可以用python内置的全局sorted()方法来对可迭代的序列排序生成新的序列。

1)排序基础

简单的升序排序是非常容易的。只需要调用sorted()方法。它返回一个新的list,新的list的元素基于小于运算符(__lt__)来排序。
复制代码 代码如下:
>>> sorted([5,2,3,1,4])
[1,4,5]

 
你也可以使用list.sort()方法来排序,此时list本身将被修改。通常此方法不如sorted()方便,但是如果你不需要保留原来的list,此方法将更有效。
复制代码 代码如下:
>>> a = [5,4]
>>> a.sort()
>>> a
[1,5]

另一个不同就是list.sort()方法仅被定义在list中,相反地sorted()方法对所有的可迭代序列都有效。
复制代码 代码如下:>>>
sorted({1: 'D',2: 'B',3: 'B',4: 'E',5: 'A'})
[1,5]

2)key参数/函数

从python2.4开始,list.sort()和sorted()函数增加了key参数来指定一个函数,此函数将在每个元素比较前被调用。 例如通过key指定的函数来忽略字符串的大小写:
复制代码 代码如下:
>>> sorted("This is a test string from Andrew".split(),key=str.lower)
['a','Andrew','from','is','string','test','This']

key参数的值为一个函数,此函数只有一个参数且返回一个值用来进行比较。这个技术是快速的因为key指定的函数将准确地对每个元素调用。

更广泛的使用情况是用复杂对象的某些值来对复杂对象的序列排序,例如:

复制代码 代码如下:
>>> student_tuples = [
        ('john','A',15),
        ('jane','B',12),
        ('dave',10),
]
>>> sorted(student_tuples,key=lambda student: student[2])   # sort by age
[('dave',('jane',('john',15)]

同样的技术对拥有命名属性的复杂对象也适用,例如:

复制代码 代码如下:
>>> class Student:
        def __init__(self,name,grade,age):
                self.name = name
                self.grade = grade
                self.age = age
        def __repr__(self):
                return repr((self.name,self.grade,self.age))
>>> student_objects = [
        Student('john',
        Student('jane',
        Student('dave',
]
>>> sorted(student_objects,key=lambda student: student.age)   # sort by age
[('dave',15)]

3)Operator 模块函数

上面的key参数的使用非常广泛,因此python提供了一些方便的函数来使得访问方法更加容易和快速。operator模块有itemgetter,attrgetter,从2.6开始还增加了methodcaller方法。使用这些方法,上面的操作将变得更加简洁和快速:
复制代码 代码如下:
>>> from operator import itemgetter,attrgetter
>>> sorted(student_tuples,key=itemgetter(2))
[('dave',15)]
>>> sorted(student_objects,key=attrgetter('age'))
[('dave',15)]

operator模块还允许多级的排序,例如,先以grade,然后再以age来排序:
复制代码 代码如下:
>>> sorted(student_tuples,key=itemgetter(1,2))
[('john',('dave',12)]
>>> sorted(student_objects,key=attrgetter('grade','age'))
[('john',12)]

4)升序和降序

list.sort()和sorted()都接受一个参数reverse(True or False)来表示升序或降序排序。例如对上面的student降序排序如下:
复制代码 代码如下:
>>> sorted(student_tuples,key=itemgetter(2),reverse=True)
[('john',10)]
>>> sorted(student_objects,key=attrgetter('age'),10)]

5)排序的稳定性和复杂排序

从python2.2开始,排序被保证为稳定的。意思是说多个元素如果有相同的key,则排序前后他们的先后顺序不变。
复制代码 代码如下:
>>> data = [('red',1),('blue',('red',2),2)]
>>> sorted(data,key=itemgetter(0))
[('blue',2)]

注意在排序后'blue'的顺序被保持了,即'blue',1在'blue',2的前面。
 
更复杂地你可以构建多个步骤来进行更复杂的排序,例如对student数据先以grade降序排列,然后再以age升序排列。
复制代码 代码如下:
>>> s = sorted(student_objects,key=attrgetter('age'))     # sort on secondary key
>>> sorted(s,key=attrgetter('grade'),reverse=True)       # now sort on primary key,descending
[('dave',15)]

6)最老土的排序方法-DSU

我们称其为DSU(Decorate-Sort-Undecorate),原因为排序的过程需要下列三步:
第一:对原始的list进行装饰,使得新list的值可以用来控制排序;
第二:对装饰后的list排序;
第三:将装饰删除,将排序后的装饰list重新构建为原来类型的list;
 

例如,使用DSU方法来对student数据根据grade排序:
>>> decorated = [(student.grade,i,student) for i,student in enumerate(student_objects)]
>>> decorated.sort()
>>> [student for grade,student in decorated]               # undecorate
[('john',10)]
上面的比较能够工作,原因是tuples是可以用来比较,tuples间的比较首先比较tuples的第一个元素,如果第一个相同再比较第二个元素,以此类推。
 

并不是所有的情况下都需要在以上的tuples中包含索引,但是包含索引可以有以下好处:
第一:排序是稳定的,如果两个元素有相同的key,则他们的原始先后顺序保持不变;
第二:原始的元素不必用来做比较,因为tuples的第一和第二元素用来比较已经是足够了。
 

此方法被RandalL.在perl中广泛推广后,他的另一个名字为也被称为Schwartzian transform。
 

对大的list或list的元素计算起来太过复杂的情况下,在python2.4前,DSU很可能是最快的排序方法。但是在2.4之后,上面解释的key函数提供了类似的功能。
 

7)其他语言普遍使用的排序方法-cmp函数

在python2.4前,sorted()和list.sort()函数没有提供key参数,但是提供了cmp参数来让用户指定比较函数。此方法在其他语言中也普遍存在。

在python3.0中,cmp参数被彻底的移除了,从而简化和统一语言,减少了高级比较和__cmp__方法的冲突。

在python2.x中cmp参数指定的函数用来进行元素间的比较。此函数需要2个参数,然后返回负数表示小于,0表示等于,正数表示大于。例如:
复制代码 代码如下:
>>> def numeric_compare(x,y):
        return x - y
>>> sorted([5,3],cmp=numeric_compare)
[1,5]

或者你可以反序排序:
复制代码 代码如下:
>>> def reverse_numeric(x,y):
        return y - x
>>> sorted([5,cmp=reverse_numeric)
[5,1]

当我们将现有的2.x的代码移植到3.x时,需要将cmp函数转化为key函数,以下的wrapper很有帮助:

复制代码 代码如下:
def cmp_to_key(mycmp):
    'Convert a cmp= function into a key= function'
    class K(object):
        def __init__(self,obj,*args):
            self.obj = obj
        def __lt__(self,other):
            return mycmp(self.obj,other.obj) < 0
        def __gt__(self,other.obj) > 0
        def __eq__(self,other.obj) == 0
        def __le__(self,other.obj) <= 0
        def __ge__(self,other.obj) >= 0
        def __ne__(self,other.obj) != 0
    return K

(编辑:安卓应用网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    推荐文章
      热点阅读