加入收藏 | 设为首页 | 会员中心 | 我要投稿 安卓应用网 (https://www.0791zz.com/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 编程开发 > Python > 正文

Python 和 JS 有哪些相同之处

发布时间:2020-05-24 16:27:43 所属栏目:Python 来源:互联网
导读:【嵌牛导读】Python是一门运用很广泛的语言,自动化脚本、爬虫,甚至在深度学习领域也都有Python的身影。作为一名前端开发者,也了解ES6中的很多特性借鉴自Python(比如默认参数、解构赋值、Decorator等),同时本文会

【嵌牛导读】Python 是一门运用很广泛的语言,自动化脚本、爬虫,甚至在深度学习领域也都有 Python 的身影。作为一名前端开发者,也了解 ES6 中的很多特性借鉴自 Python (比如默认参数、解构赋值、Decorator等),同时本文会对 Python 的一些用法与 JS 进行类比。不管是提升自己的知识广度,还是更好地迎接 AI 时代,Python 都是一门值得学习的语言。

【嵌牛鼻子】python与JS的相似之处

【嵌牛提问】python与JS有哪些相似呢?

【嵌牛正文】

数据类型

在 Python 中,最常用的能够直接处理的数据类型有以下几种:

数字[整数(int)、浮点型(float)、长整型(long)、复数(complex)]

字符串(str)

布尔值(bool)

空值(None)

除此之外,Python 还提供了列表[list]、字典[dict] 等多种数据类型,这在下文中会介绍。

类型转换与类型判断

与 JS 十分类似,python 也能实现不同数据类型间的强制与隐式转换,例子如下:

强制类型转换:

int('3') # 3
str(3.14) # '3.14'
float('3.14') # 3.14
# 区别于 JS 只有 Number 一种类型,Python 中数字中的不同类型也能相互强制转换
float(3) # 3.0
bool(3) # True
bool(0) # False

隐式类型转换:

1 + 1.0 # 2.0
1 + False # 1
1.0 + True # 2.0
# 区别于 JS 的 String + Number = String,py 中 str + int 会报错
1 + '1' # TypeError: cannot concatenate 'str' and 'int' objects

此外写代码的时候经常会需要判断值的类型,可以 使用 python 提供的 type() 函数获取变量的类型,或者使用 isinstance(x,type) 来判断 x 是否属于相应的 type 类型。

type(1.3) == float # True
isinstance('a',str) # True
isinstance(1.3,int) # False
isinstance(True,bool) # True
isinstance([],list) # True
isinstance({},dict) # True

有序集合类型

集合是指包含一组元素的数据结构,有序集合即集合里面的元素是是按照顺序排列的,Python 中的有序集合大概有以下几类:list,tuple,str,unicode。

list 类型

Python 中 List 类型类似于 JS 中的 Array,

L = [1,2,3]
print L[-1] # '3'
L.append(4) # 末尾添加元素
print L # [1,3,4]
L.insert(0,'hi') # 指定索引位置添加元素
print L # ['hi',1,4]
L.pop() # 末尾移除元素 L.pop(2) ?????? 2 ???
print L # ['hi',3]

tuple 类型

tuple 类型是另一种有序的列表,中文翻译为" 元组 "。tuple 和 list 非常类似,但是,tuple 一旦创建完毕,就不能修改了。

t = (1,3)
print t[0] # 1
t[0] = 11 # TypeError: 'tuple' object does not support item assignment
t = (1)
print t # 1 t 的结果是整数 1
t = (1,) # 为了避免出现如上有歧义的单元素 tuple,所以 Python 规定,单元素 tuple 要多加一个逗号","
print t # (1,)

无序集合类型

dict 类型

Python 中的 dict 类型类似于 JS 中的 {} (最大的不同是它是没有顺序的),它有如下特点:

查找速度快 (无论 dict 有 10 个元素还是 10 万个元素,查找速度都一样)

占用内存大 (与 list 类型相反)

dict 中的 key 不能重复

dict 中存储的 key-value 序对是没有顺序的

d = {
  'a': 1,'b': 2,'c': 3
}

print d # {'a': 1,'c': 3,'b': 2}  可以看出打印出的序对没有按正常的顺序打出

# 遍历 dict
for key,value in d.items():
  print('%s: %s' % (key,value))
# a: 1
# c: 3
# b: 2

set 类型

有的时候,我们只想要 dict 的 key,不关心 key 对应的 value,而且要保证这个集合的元素不会重复,这时,set 类型就派上用场了。set 类型有如下特点:

set 存储的元素和 dict 的 key 类似,必须是不变对象

set 存储的元素也是没有顺序的

s = set(['A','B','C','C'])
print s # set(['A','B'])
s.add('D')
print s # set(['A','D'])
s.remove('D')
print s # set(['A','B'])

Python 中的迭代

在介绍完 Python 中的有序集合和无序集合类型后,必然存在遍历集合的 for 循环。但是和其它语言的标准 for 循环不同,Python 中的所有迭代是通过 for ... in 来完成的。以下给出一些常用的迭代 demos:

索引迭代:

L = ['apple','banana','orange']
for index,name in enumerate(L): # enumerate() 函数把 ['apple','orange'] 变成了类似 [(0,'apple),(1,'banana'),(2,'orange')] 的形式
  print index,'-',name
# 0 - apple
# 1 - banana
# 2 - orange

迭代 dict 的 value:

d = { 'apple': 6,'banana': 8,'orange': 5 }
print d.values() # [6,8,5]
for v in d.values()
  print v
# 6
# 8
# 5

迭代 dict 的 key 和 value:

d = { 'apple': 6,'orange': 5 }
for key,value in d.items()
  print key,':',value
# apple : 6
# banana: 8
# orange: 5

切片操作符

Python 提供的切片操作符类似于 JS 提供的原生函数 slice()。有了切片操作符,大大简化了一些原来得用循环的操作。

L = ['apple','orange','pear']
L[0:2] # ['apple','banana'] 取前 2 个元素
L[:2] # ['apple','banana'] 如果第一个索引是 0,可以省略
L[:] # ['apple','pear'] 只用一个 : ,表示从头到尾
L[::2] # ['apple','orange'] 第三个参数表示每 N 个取一个,这里表示从头开始,每 2 个元素取出一个来

列表生成器

如果要生成 [1x1,2x2,3x3,...,10x10] 怎么做?方法一是循环:

L = []
for x in range(1,11):
  L.append(x * x)

但是循环太繁琐,而列表生成式则可以用一行语句代替循环生成上面的 list:

# 把要生成的元素 x * x 放到前面,后面跟 for 循环,就可以把 list 创建出来

[x * x for x in range(1,11)]

# [1,4,9,16,25,36,49,64,81,100]

列表生成式的 for 循环后面还可以加上 if 判断(类似于 JS 中的 filter() 函数),示例如下:

[x * x for x in range(1,11) if x % 2 == 0]

# [4,100]

for 循环可以嵌套,因此,在列表生成式中,也可以用多层 for 循环来生成列表。

[m + n for m in 'ABC' for n in '123']
# ['A1','A2','A3','B1','B2','B3','C1','C2','C3']

Python 函数

默认参数

JS 中 ES6 的 默认参数正是借鉴于 Python,用法如下:

def greet(name='World'):
  print 'Hello,' + name + '.'
greet() # Hello,World.
greet('Python') # Hello,Python.

可变参数

类似于 JS 函数中自动识别传入参数的个数,Python 也提供了定义可变参数,即在可变参数的名字前面带上个 * 号。

def fn(*args):
  print args
fn() # ()
fn('a') # ('a',)
fn('a','b') # ('a','b')

Python 解释器会把传入的一组参数组装成一个 tuple 传递给可变参数,因此,在函数内部,直接把变量 args 看成一个 tuple 就好了。

常用高阶函数

Python 中常用的函数 (map、reduce、filter) 的作用和 JS 中一致,只是用法稍微不同。

map 函数: 接收一个函数 f 和一个 list,并通过把函数 f 依次作用在 list 的每个元素上,得到一个新的 list 并返回。

def f(x):
  return x * x
print map(f,[1,5,6,7,9]) # [1,81]

reduce 函数: 接收一个函数 f 和一个 list(可以接受第三个值作为初始值),reduce() 对 list 的每个元素反复调用函数 f,并返回最终结果值。

def f(x,y):
  return x * y
reduce(f,5]) # 15

filter 函数: 接收一个函数 f 和一个list,这个函数 f 的作用是对每个元素进行判断,返回 True或 False,filter() 根据判断结果自动过滤掉不符合条件的元素,返回由符合条件元素组成的新 list。

def is_odd(x):
  return x % 2 == 1
filter(is_odd,12,17]) # [1,17]

匿名函数

和 JS 的匿名函数不同的地方是,Python 的匿名函数中只能有一个表达式,且不能写 return。拿 map() 函数为例:

map(lambda x: x * x,81]

关键词 lambda 表示匿名函数,冒号前面的 x 表示函数参数,可以看出匿名函数 lambda x: x* x实际上就是:

def f(x):
  return x * x

闭包

之前写过一些关于 JS 闭包的文章,比如 深入浅出JavaScript之闭包(Closure)、以及 读书笔记-你不知道的 JavaScript (上),Python 中闭包的定义和 JS 中的是一致的即:内层函数引用了外层函数的变量,然后返回内层函数。下面来看下 Py 中闭包之 for 循环经典问题:

# 希望一次返回3个函数,分别计算1x1,3x3:
def count():
  fs = []
  for i in range(1,4):
    def f():
      return i * i
    fs.append(f)
  return fs
f1,f2,f3 = count() # 这种写法相当于 ES6 中的解构赋值
print f1(),f2(),f3() # 9 9 9

老问题了,f1(),f3() 结果不应该是 1,9 吗,实际结果为什么都是 9 呢?

原因就是当 count() 函数返回了 3 个函数时,这 3 个函数所引用的变量 i 的值已经变成了 3。由于 f1、f2、f3 并没有被调用,所以,此时他们并未计算 i*i,当 f1 被调用时,i 已经变为 3 了。

要正确使用闭包,就要确保引用的局部变量在函数返回后不能变。代码修改如下:

(编辑:安卓应用网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    推荐文章
      热点阅读