python实现随机森林random forest的原理及方法
|
引言 想通过随机森林来获取数据的主要特征 1、理论 随机森林是一个高度灵活的机器学习方法,拥有广泛的应用前景,从市场营销到医疗保健保险。 既可以用来做市场营销模拟的建模,统计客户来源,保留和流失。也可用来预测疾病的风险和病患者的易感性。 根据个体学习器的生成方式,目前的集成学习方法大致可分为两大类,即个体学习器之间存在强依赖关系,必须串行生成的序列化方法,以及个体学习器间不存在强依赖关系,可同时生成的并行化方法; 前者的代表是Boosting,后者的代表是Bagging和“随机森林”(Random 随机森林在以决策树为基学习器构建Bagging集成的基础上,进一步在决策树的训练过程中引入了随机属性选择(即引入随机特征选择)。 简单来说,随机森林就是对决策树的集成,但有两点不同: (2)特征选取的差异性:每个决策树的n个分类特征是在所有特征中随机选择的(n是一个需要我们自己调整的参数) 随机森林是一个可做能够回归和分类。 它具备处理大数据的特性,而且它有助于估计或变量是非常重要的基础数据建模。 参数说明: 最主要的两个参数是n_estimators和max_features。 n_estimators:表示森林里树的个数。理论上是越大越好。但是伴随着就是计算时间的增长。但是并不是取得越大就会越好,预测效果最好的将会出现在合理的树个数。 max_features:随机选择特征集合的子集合,并用来分割节点。子集合的个数越少,方差就会减少的越快,但同时偏差就会增加的越快。根据较好的实践经验。如果是回归问题则: max_features=n_features,如果是分类问题则max_features=sqrt(n_features)。 如果想获取较好的结果,必须将max_depth=None,同时min_sample_split=1。 2、随机森林python实现 2.1Demo1 实现随机森林基本功能
#随机森林
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
import numpy as np
from sklearn.datasets import load_iris
iris=load_iris()
#print iris#iris的4个属性是:萼片宽度 萼片长度 花瓣宽度 花瓣长度 标签是花的种类:setosa versicolour virginica
print(iris['target'].shape)
rf=RandomForestRegressor()#这里使用了默认的参数设置
rf.fit(iris.data[:150],iris.target[:150])#进行模型的训练
#随机挑选两个预测不相同的样本
instance=iris.data[[100,109]]
print(instance)
rf.predict(instance[[0]])
print('instance 0 prediction;',rf.predict(instance[[0]]))
print( 'instance 1 prediction;',rf.predict(instance[[1]]))
print(iris.target[100],iris.target[109])
运行结果 (150,) 2.2 Demo2 3种方法的比较 #random forest test from sklearn.model_selection import cross_val_score from sklearn.datasets import make_blobs from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import ExtraTreesClassifier from sklearn.tree import DecisionTreeClassifier X,y = make_blobs(n_samples=10000,n_features=10,centers=100,random_state=0) clf = DecisionTreeClassifier(max_depth=None,min_samples_split=2,random_state=0) scores = cross_val_score(clf,X,y) print(scores.mean()) clf = RandomForestClassifier(n_estimators=10,max_depth=None,y) print(scores.mean()) clf = ExtraTreesClassifier(n_estimators=10,y) print(scores.mean()) 运行结果: 0.979408793821 2.3 Demo3-实现特征选择 #随机森林2 from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor import numpy as np from sklearn.datasets import load_iris iris=load_iris() from sklearn.model_selection import cross_val_score,ShuffleSplit X = iris["data"] Y = iris["target"] names = iris["feature_names"] rf = RandomForestRegressor() scores = [] for i in range(X.shape[1]): score = cross_val_score(rf,X[:,i:i+1],Y,scoring="r2",cv=ShuffleSplit(len(X),3,.3)) scores.append((round(np.mean(score),3),names[i])) print(sorted(scores,reverse=True)) 运行结果: [(0.89300000000000002,'petal width (cm)'),(0.82099999999999995,'petal length 2.4 demo4-随机森林 本来想利用以下代码来构建随机随机森林决策树,但是,遇到的问题是,程序一直在运行,无法响应,还需要调试。
#随机森林4
#coding:utf-8
import csv
from random import seed
from random import randrange
from math import sqrt
def loadCSV(filename):#加载数据,一行行的存入列表
dataSet = []
with open(filename,'r') as file:
csvReader = csv.reader(file)
for line in csvReader:
dataSet.append(line)
return dataSet
# 除了标签列,其他列都转换为float类型
def column_to_float(dataSet):
featLen = len(dataSet[0]) - 1
for data in dataSet:
for column in range(featLen):
data[column] = float(data[column].strip())
# 将数据集随机分成N块,方便交叉验证,其中一块是测试集,其他四块是训练集
def spiltDataSet(dataSet,n_folds):
fold_size = int(len(dataSet) / n_folds)
dataSet_copy = list(dataSet)
dataSet_spilt = []
for i in range(n_folds):
fold = []
while len(fold) < fold_size: # 这里不能用if,if只是在第一次判断时起作用,while执行循环,直到条件不成立
index = randrange(len(dataSet_copy))
fold.append(dataSet_copy.pop(index)) # pop() 函数用于移除列表中的一个元素(默认最后一个元素),并且返回该元素的值。
dataSet_spilt.append(fold)
return dataSet_spilt
# 构造数据子集
def get_subsample(dataSet,ratio):
subdataSet = []
lenSubdata = round(len(dataSet) * ratio)#返回浮点数
while len(subdataSet) < lenSubdata:
index = randrange(len(dataSet) - 1)
subdataSet.append(dataSet[index])
# print len(subdataSet)
return subdataSet
# 分割数据集
def data_spilt(dataSet,index,value):
left = []
right = []
for row in dataSet:
if row[index] < value:
left.append(row)
else:
right.append(row)
return left,right
# 计算分割代价
def spilt_loss(left,right,class_values):
loss = 0.0
for class_value in class_values:
left_size = len(left)
if left_size != 0: # 防止除数为零
prop = [row[-1] for row in left].count(class_value) / float(left_size)
loss += (prop * (1.0 - prop))
right_size = len(right)
if right_size != 0:
prop = [row[-1] for row in right].count(class_value) / float(right_size)
loss += (prop * (1.0 - prop))
return loss
# 选取任意的n个特征,在这n个特征中,选取分割时的最优特征
def get_best_spilt(dataSet,n_features):
features = []
class_values = list(set(row[-1] for row in dataSet))
b_index,b_value,b_loss,b_left,b_right = 999,999,None,None
while len(features) < n_features:
index = randrange(len(dataSet[0]) - 1)
if index not in features:
features.append(index)
# print 'features:',features
for index in features:#找到列的最适合做节点的索引,(损失最小)
for row in dataSet:
left,right = data_spilt(dataSet,row[index])#以它为节点的,左右分支
loss = spilt_loss(left,class_values)
if loss < b_loss:#寻找最小分割代价
b_index,b_right = index,row[index],loss,left,right
# print b_loss
# print type(b_index)
return {'index': b_index,'value': b_value,'left': b_left,'right': b_right}
# 决定输出标签
def decide_label(data):
output = [row[-1] for row in data]
return max(set(output),key=output.count)
# 子分割,不断地构建叶节点的过程对对对
def sub_spilt(root,n_features,max_depth,min_size,depth):
left = root['left']
# print left
right = root['right']
del (root['left'])
del (root['right'])
# print depth
if not left or not right:
root['left'] = root['right'] = decide_label(left + right)
# print 'testing'
return
if depth > max_depth:
root['left'] = decide_label(left)
root['right'] = decide_label(right)
return
if len(left) < min_size:
root['left'] = decide_label(left)
else:
root['left'] = get_best_spilt(left,n_features)
# print 'testing_left'
sub_spilt(root['left'],depth + 1)
if len(right) < min_size:
root['right'] = decide_label(right)
else:
root['right'] = get_best_spilt(right,n_features)
# print 'testing_right'
sub_spilt(root['right'],depth + 1)
# 构造决策树
def build_tree(dataSet,min_size):
root = get_best_spilt(dataSet,n_features)
sub_spilt(root,1)
return root
# 预测测试集结果
def predict(tree,row):
predictions = []
if row[tree['index']] < tree['value']:
if isinstance(tree['left'],dict):
return predict(tree['left'],row)
else:
return tree['left']
else:
if isinstance(tree['right'],dict):
return predict(tree['right'],row)
else:
return tree['right']
# predictions=set(predictions)
def bagging_predict(trees,row):
predictions = [predict(tree,row) for tree in trees]
return max(set(predictions),key=predictions.count)
# 创建随机森林
def random_forest(train,test,ratio,n_feature,n_trees):
trees = []
for i in range(n_trees):
train = get_subsample(train,ratio)#从切割的数据集中选取子集
tree = build_tree(train,min_size)
# print 'tree %d: '%i,tree
trees.append(tree)
# predict_values = [predict(trees,row) for row in test]
predict_values = [bagging_predict(trees,row) for row in test]
return predict_values
# 计算准确率
def accuracy(predict_values,actual):
correct = 0
for i in range(len(actual)):
if actual[i] == predict_values[i]:
correct += 1
return correct / float(len(actual))
if __name__ == '__main__':
seed(1)
dataSet = loadCSV(r'G: 研究生tianchiCompetition训练小样本2.csv')
column_to_float(dataSet)
n_folds = 5
max_depth = 15
min_size = 1
ratio = 1.0
# n_features=sqrt(len(dataSet)-1)
n_features = 15
n_trees = 10
folds = spiltDataSet(dataSet,n_folds)#先是切割数据集
scores = []
for fold in folds:
train_set = folds[
:] # 此处不能简单地用train_set=folds,这样用属于引用,那么当train_set的值改变的时候,folds的值也会改变,所以要用复制的形式。(L[:])能够复制序列,D.copy() 能够复制字典,list能够生成拷贝 list(L)
train_set.remove(fold)#选好训练集
# print len(folds)
train_set = sum(train_set,[]) # 将多个fold列表组合成一个train_set列表
# print len(train_set)
test_set = []
for row in fold:
row_copy = list(row)
row_copy[-1] = None
test_set.append(row_copy)
# for row in test_set:
# print row[-1]
actual = [row[-1] for row in fold]
predict_values = random_forest(train_set,test_set,n_trees)
accur = accuracy(predict_values,actual)
scores.append(accur)
print ('Trees is %d' % n_trees)
print ('scores:%s' % scores)
print ('mean score:%s' % (sum(scores) / float(len(scores))))
(编辑:安卓应用网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |
