加入收藏 | 设为首页 | 会员中心 | 我要投稿 安卓应用网 (https://www.0791zz.com/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 编程开发 > Python > 正文

python实现随机森林random forest的原理及方法

发布时间:2020-05-24 17:28:15 所属栏目:Python 来源:互联网
导读:引言想通过随机森林来获取数据的主要特征1、理论随机森林是一个高度灵活的机器学习方法,拥有广泛的应用前景,从市场营销到医疗保健保险。既可以用来做市场营销模拟的建模,统计客户来源,保留和流失。也可用来预

引言

想通过随机森林来获取数据的主要特征

1、理论

随机森林是一个高度灵活的机器学习方法,拥有广泛的应用前景,从市场营销到医疗保健保险。 既可以用来做市场营销模拟的建模,统计客户来源,保留和流失。也可用来预测疾病的风险和病患者的易感性。

根据个体学习器的生成方式,目前的集成学习方法大致可分为两大类,即个体学习器之间存在强依赖关系,必须串行生成的序列化方法,以及个体学习器间不存在强依赖关系,可同时生成的并行化方法;

前者的代表是Boosting,后者的代表是Bagging和“随机森林”(Random
Forest)

随机森林在以决策树为基学习器构建Bagging集成的基础上,进一步在决策树的训练过程中引入了随机属性选择(即引入随机特征选择)。

简单来说,随机森林就是对决策树的集成,但有两点不同:

(2)特征选取的差异性:每个决策树的n个分类特征是在所有特征中随机选择的(n是一个需要我们自己调整的参数)
随机森林,简单理解, 比如预测salary,就是构建多个决策树job,age,house,然后根据要预测的量的各个特征(teacher,39,suburb)分别在对应决策树的目标值概率(salary<5000,salary>=5000),从而,确定预测量的发生概率(如,预测出P(salary<5000)=0.3).

随机森林是一个可做能够回归和分类。 它具备处理大数据的特性,而且它有助于估计或变量是非常重要的基础数据建模。

参数说明:

最主要的两个参数是n_estimators和max_features。

n_estimators:表示森林里树的个数。理论上是越大越好。但是伴随着就是计算时间的增长。但是并不是取得越大就会越好,预测效果最好的将会出现在合理的树个数。

max_features:随机选择特征集合的子集合,并用来分割节点。子集合的个数越少,方差就会减少的越快,但同时偏差就会增加的越快。根据较好的实践经验。如果是回归问题则:

max_features=n_features,如果是分类问题则max_features=sqrt(n_features)。

如果想获取较好的结果,必须将max_depth=None,同时min_sample_split=1。
同时还要记得进行cross_validated(交叉验证),除此之外记得在random forest中,bootstrap=True。但在extra-trees中,bootstrap=False。

2、随机森林python实现

2.1Demo1

实现随机森林基本功能

#随机森林
from sklearn.tree import DecisionTreeRegressor 
from sklearn.ensemble import RandomForestRegressor 
import numpy as np 

from sklearn.datasets import load_iris 
iris=load_iris() 
#print iris#iris的4个属性是:萼片宽度 萼片长度 花瓣宽度 花瓣长度 标签是花的种类:setosa versicolour virginica 
print(iris['target'].shape)
rf=RandomForestRegressor()#这里使用了默认的参数设置 
rf.fit(iris.data[:150],iris.target[:150])#进行模型的训练 

#随机挑选两个预测不相同的样本 
instance=iris.data[[100,109]] 
print(instance)
rf.predict(instance[[0]])
print('instance 0 prediction;',rf.predict(instance[[0]]))
print( 'instance 1 prediction;',rf.predict(instance[[1]]))
print(iris.target[100],iris.target[109]) 

运行结果

(150,)
[[ 6.3  3.3  6.   2.5]
 [ 7.2  3.6  6.1  2.5]]
instance 0 prediction; [ 2.]
instance 1 prediction; [ 2.]
2 2

2.2 Demo2

3种方法的比较

#random forest test
from sklearn.model_selection import cross_val_score
from sklearn.datasets import make_blobs
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.tree import DecisionTreeClassifier
X,y = make_blobs(n_samples=10000,n_features=10,centers=100,random_state=0)

clf = DecisionTreeClassifier(max_depth=None,min_samples_split=2,random_state=0)
scores = cross_val_score(clf,X,y)
print(scores.mean())    


clf = RandomForestClassifier(n_estimators=10,max_depth=None,y)
print(scores.mean())    

clf = ExtraTreesClassifier(n_estimators=10,y)
print(scores.mean())

运行结果:

0.979408793821
0.999607843137
0.999898989899

2.3 Demo3-实现特征选择

#随机森林2
from sklearn.tree import DecisionTreeRegressor 
from sklearn.ensemble import RandomForestRegressor 
import numpy as np 
from sklearn.datasets import load_iris 
iris=load_iris() 

from sklearn.model_selection import cross_val_score,ShuffleSplit 
X = iris["data"] 
Y = iris["target"] 
names = iris["feature_names"] 
rf = RandomForestRegressor() 
scores = [] 
for i in range(X.shape[1]): 
 score = cross_val_score(rf,X[:,i:i+1],Y,scoring="r2",cv=ShuffleSplit(len(X),3,.3)) 
 scores.append((round(np.mean(score),3),names[i])) 
print(sorted(scores,reverse=True))

运行结果:

[(0.89300000000000002,'petal width (cm)'),(0.82099999999999995,'petal length
(cm)'),(0.13,'sepal length (cm)'),(-0.79100000000000004,'sepal width (cm)')]

2.4 demo4-随机森林

本来想利用以下代码来构建随机随机森林决策树,但是,遇到的问题是,程序一直在运行,无法响应,还需要调试。

#随机森林4
#coding:utf-8 
import csv 
from random import seed 
from random import randrange 
from math import sqrt 
def loadCSV(filename):#加载数据,一行行的存入列表 
 dataSet = [] 
 with open(filename,'r') as file: 
 csvReader = csv.reader(file) 
 for line in csvReader: 
  dataSet.append(line) 
 return dataSet 

# 除了标签列,其他列都转换为float类型 
def column_to_float(dataSet): 
 featLen = len(dataSet[0]) - 1 
 for data in dataSet: 
 for column in range(featLen): 
  data[column] = float(data[column].strip()) 

# 将数据集随机分成N块,方便交叉验证,其中一块是测试集,其他四块是训练集 
def spiltDataSet(dataSet,n_folds): 
 fold_size = int(len(dataSet) / n_folds) 
 dataSet_copy = list(dataSet) 
 dataSet_spilt = [] 
 for i in range(n_folds): 
 fold = [] 
 while len(fold) < fold_size: # 这里不能用if,if只是在第一次判断时起作用,while执行循环,直到条件不成立 
  index = randrange(len(dataSet_copy)) 
  fold.append(dataSet_copy.pop(index)) # pop() 函数用于移除列表中的一个元素(默认最后一个元素),并且返回该元素的值。 
 dataSet_spilt.append(fold) 
 return dataSet_spilt 

# 构造数据子集 
def get_subsample(dataSet,ratio): 
 subdataSet = [] 
 lenSubdata = round(len(dataSet) * ratio)#返回浮点数 
 while len(subdataSet) < lenSubdata: 
 index = randrange(len(dataSet) - 1) 
 subdataSet.append(dataSet[index]) 
 # print len(subdataSet) 
 return subdataSet 

# 分割数据集 
def data_spilt(dataSet,index,value): 
 left = [] 
 right = [] 
 for row in dataSet: 
 if row[index] < value: 
  left.append(row) 
 else: 
  right.append(row) 
 return left,right 

# 计算分割代价 
def spilt_loss(left,right,class_values): 
 loss = 0.0 
 for class_value in class_values: 
 left_size = len(left) 
 if left_size != 0: # 防止除数为零 
  prop = [row[-1] for row in left].count(class_value) / float(left_size) 
  loss += (prop * (1.0 - prop)) 
 right_size = len(right) 
 if right_size != 0: 
  prop = [row[-1] for row in right].count(class_value) / float(right_size) 
  loss += (prop * (1.0 - prop)) 
 return loss 

# 选取任意的n个特征,在这n个特征中,选取分割时的最优特征 
def get_best_spilt(dataSet,n_features): 
 features = [] 
 class_values = list(set(row[-1] for row in dataSet)) 
 b_index,b_value,b_loss,b_left,b_right = 999,999,None,None 
 while len(features) < n_features: 
 index = randrange(len(dataSet[0]) - 1) 
 if index not in features: 
  features.append(index) 
 # print 'features:',features 
 for index in features:#找到列的最适合做节点的索引,(损失最小) 
 for row in dataSet: 
  left,right = data_spilt(dataSet,row[index])#以它为节点的,左右分支 
  loss = spilt_loss(left,class_values) 
  if loss < b_loss:#寻找最小分割代价 
  b_index,b_right = index,row[index],loss,left,right 
 # print b_loss 
 # print type(b_index) 
 return {'index': b_index,'value': b_value,'left': b_left,'right': b_right} 

# 决定输出标签 
def decide_label(data): 
 output = [row[-1] for row in data] 
 return max(set(output),key=output.count) 

# 子分割,不断地构建叶节点的过程对对对 
def sub_spilt(root,n_features,max_depth,min_size,depth): 
 left = root['left'] 
 # print left 
 right = root['right'] 
 del (root['left']) 
 del (root['right']) 
 # print depth 
 if not left or not right: 
 root['left'] = root['right'] = decide_label(left + right) 
 # print 'testing' 
 return 
 if depth > max_depth: 
 root['left'] = decide_label(left) 
 root['right'] = decide_label(right) 
 return 
 if len(left) < min_size: 
 root['left'] = decide_label(left) 
 else: 
 root['left'] = get_best_spilt(left,n_features) 
 # print 'testing_left' 
 sub_spilt(root['left'],depth + 1) 
 if len(right) < min_size: 
 root['right'] = decide_label(right) 
 else: 
 root['right'] = get_best_spilt(right,n_features) 
 # print 'testing_right' 
 sub_spilt(root['right'],depth + 1) 

 # 构造决策树 
def build_tree(dataSet,min_size): 
 root = get_best_spilt(dataSet,n_features) 
 sub_spilt(root,1) 
 return root 
# 预测测试集结果 
def predict(tree,row): 
 predictions = [] 
 if row[tree['index']] < tree['value']: 
 if isinstance(tree['left'],dict): 
  return predict(tree['left'],row) 
 else: 
  return tree['left'] 
 else: 
 if isinstance(tree['right'],dict): 
  return predict(tree['right'],row) 
 else: 
  return tree['right'] 
  # predictions=set(predictions) 
def bagging_predict(trees,row): 
 predictions = [predict(tree,row) for tree in trees] 
 return max(set(predictions),key=predictions.count) 
# 创建随机森林 
def random_forest(train,test,ratio,n_feature,n_trees): 
 trees = [] 
 for i in range(n_trees): 
 train = get_subsample(train,ratio)#从切割的数据集中选取子集 
 tree = build_tree(train,min_size) 
 # print 'tree %d: '%i,tree 
 trees.append(tree) 
 # predict_values = [predict(trees,row) for row in test] 
 predict_values = [bagging_predict(trees,row) for row in test] 
 return predict_values 
# 计算准确率 
def accuracy(predict_values,actual): 
 correct = 0 
 for i in range(len(actual)): 
 if actual[i] == predict_values[i]: 
  correct += 1 
 return correct / float(len(actual)) 
if __name__ == '__main__': 
 seed(1) 
 dataSet = loadCSV(r'G:研究生tianchiCompetition训练小样本2.csv') 
 column_to_float(dataSet) 
 n_folds = 5 
 max_depth = 15 
 min_size = 1 
 ratio = 1.0 
 # n_features=sqrt(len(dataSet)-1) 
 n_features = 15 
 n_trees = 10 
 folds = spiltDataSet(dataSet,n_folds)#先是切割数据集 
 scores = [] 
 for fold in folds: 
 train_set = folds[ 
   :] # 此处不能简单地用train_set=folds,这样用属于引用,那么当train_set的值改变的时候,folds的值也会改变,所以要用复制的形式。(L[:])能够复制序列,D.copy() 能够复制字典,list能够生成拷贝 list(L) 
 train_set.remove(fold)#选好训练集 
 # print len(folds) 
 train_set = sum(train_set,[]) # 将多个fold列表组合成一个train_set列表 
 # print len(train_set) 
 test_set = [] 
 for row in fold: 
  row_copy = list(row) 
  row_copy[-1] = None 
  test_set.append(row_copy) 
  # for row in test_set: 
  # print row[-1] 
 actual = [row[-1] for row in fold] 
 predict_values = random_forest(train_set,test_set,n_trees) 
 accur = accuracy(predict_values,actual) 
 scores.append(accur) 
 print ('Trees is %d' % n_trees) 
 print ('scores:%s' % scores) 
 print ('mean score:%s' % (sum(scores) / float(len(scores)))) 

(编辑:安卓应用网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    推荐文章
      热点阅读