TensorFLow用Saver保存和恢复变量
发布时间:2020-05-24 18:54:18 所属栏目:Python 来源:互联网
导读:本文为大家分享了TensorFLow用Saver保存和恢复变量的具体代码,供大家参考,具体内容如下
|
本文为大家分享了TensorFLow用Saver保存和恢复变量的具体代码,供大家参考,具体内容如下 建立文件tensor_save.py,保存变量v1,v2的tensor到checkpoint files中,名称分别设置为v3,v4。
import tensorflow as tf
# Create some variables.
v1 = tf.Variable(3,name="v1")
v2 = tf.Variable(4,name="v2")
# Create model
y=tf.add(v1,v2)
# Add an op to initialize the variables.
init_op = tf.initialize_all_variables()
# Add ops to save and restore all the variables.
saver = tf.train.Saver({'v3':v1,'v4':v2})
# Later,launch the model,initialize the variables,do some work,save the
# variables to disk.
with tf.Session() as sess:
sess.run(init_op)
print("v1 = ",v1.eval())
print("v2 = ",v2.eval())
# Save the variables to disk.
save_path = saver.save(sess,"f:/tmp/model.ckpt")
print ("Model saved in file: ",save_path)
建立文件tensor_restror.py,将checkpoint files中名称分别为v3,v4的tensor分别恢复到变量v3,v4中。
import tensorflow as tf
# Create some variables.
v3 = tf.Variable(0,name="v3")
v4 = tf.Variable(0,name="v4")
# Create model
y=tf.mul(v3,v4)
# Add ops to save and restore all the variables.
saver = tf.train.Saver()
# Later,use the saver to restore variables from disk,and
# do some work with the model.
with tf.Session() as sess:
# Restore variables from disk.
saver.restore(sess,"f:/tmp/model.ckpt")
print ("Model restored.")
print ("v3 = ",v3.eval())
print ("v4 = ",v4.eval())
print ("y = ",sess.run(y))
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持编程小技巧。 您可能感兴趣的文章:
(编辑:安卓应用网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |
