Python实现的径向基(RBF)神经网络示例
发布时间:2020-05-24 19:06:12 所属栏目:Python 来源:互联网
导读:本文实例讲述了Python实现的径向基(RBF)神经网络。分享给大家供大家参考,具体如下:
|
本文实例讲述了Python实现的径向基(RBF)神经网络。分享给大家供大家参考,具体如下:
from numpy import array,append,vstack,transpose,reshape,
dot,true_divide,mean,exp,sqrt,log,
loadtxt,savetxt,zeros,frombuffer
from numpy.linalg import norm,lstsq
from multiprocessing import Process,Array
from random import sample
from time import time
from sys import stdout
from ctypes import c_double
from h5py import File
def metrics(a,b):
return norm(a - b)
def gaussian (x,mu,sigma):
return exp(- metrics(mu,x)**2 / (2 * sigma**2))
def multiQuadric (x,sigma):
return pow(metrics(mu,x)**2 + sigma**2,0.5)
def invMultiQuadric (x,-0.5)
def plateSpine (x,mu):
r = metrics(mu,x)
return (r**2) * log(r)
class Rbf:
def __init__(self,prefix = 'rbf',workers = 4,extra_neurons = 0,from_files = None):
self.prefix = prefix
self.workers = workers
self.extra_neurons = extra_neurons
# Import partial model
if from_files is not None:
w_handle = self.w_handle = File(from_files['w'],'r')
mu_handle = self.mu_handle = File(from_files['mu'],'r')
sigma_handle = self.sigma_handle = File(from_files['sigma'],'r')
self.w = w_handle['w']
self.mu = mu_handle['mu']
self.sigmas = sigma_handle['sigmas']
self.neurons = self.sigmas.shape[0]
def _calculate_error(self,y):
self.error = mean(abs(self.os - y))
self.relative_error = true_divide(self.error,mean(y))
def _generate_mu(self,x):
n = self.n
extra_neurons = self.extra_neurons
# TODO: Make reusable
mu_clusters = loadtxt('clusters100.txt',delimiter='t')
mu_indices = sample(range(n),extra_neurons)
mu_new = x[mu_indices,:]
mu = vstack((mu_clusters,mu_new))
return mu
def _calculate_sigmas(self):
neurons = self.neurons
mu = self.mu
sigmas = zeros((neurons,))
for i in xrange(neurons):
dists = [0 for _ in xrange(neurons)]
for j in xrange(neurons):
if i != j:
dists[j] = metrics(mu[i],mu[j])
sigmas[i] = mean(dists)* 2
# max(dists) / sqrt(neurons * 2))
return sigmas
def _calculate_phi(self,x):
C = self.workers
neurons = self.neurons
mu = self.mu
sigmas = self.sigmas
phi = self.phi = None
n = self.n
def heavy_lifting(c,phi):
s = jobs[c][1] - jobs[c][0]
for k,i in enumerate(xrange(jobs[c][0],jobs[c][1])):
for j in xrange(neurons):
# phi[i,j] = metrics(x[i,:],mu[j])**3)
# phi[i,j] = plateSpine(x[i,mu[j]))
# phi[i,j] = invMultiQuadric(x[i,mu[j],sigmas[j]))
phi[i,j] = multiQuadric(x[i,sigmas[j])
# phi[i,j] = gaussian(x[i,sigmas[j]))
if k % 1000 == 0:
percent = true_divide(k,s)*100
print(c,': {:2.2f}%'.format(percent))
print(c,': Done')
# distributing the work between 4 workers
shared_array = Array(c_double,n * neurons)
phi = frombuffer(shared_array.get_obj())
phi = phi.reshape((n,neurons))
jobs = []
workers = []
p = n / C
m = n % C
for c in range(C):
jobs.append((c*p,(c+1)*p + (m if c == C-1 else 0)))
worker = Process(target = heavy_lifting,args = (c,phi))
workers.append(worker)
worker.start()
for worker in workers:
worker.join()
return phi
def _do_algebra(self,y):
phi = self.phi
w = lstsq(phi,y)[0]
os = dot(w,transpose(phi))
return w,os
# Saving to HDF5
os_h5 = os_handle.create_dataset('os',data = os)
def train(self,x,y):
self.n = x.shape[0]
## Initialize HDF5 caches
prefix = self.prefix
postfix = str(self.n) + '-' + str(self.extra_neurons) + '.hdf5'
name_template = prefix + '-{}-' + postfix
phi_handle = self.phi_handle = File(name_template.format('phi'),'w')
os_handle = self.w_handle = File(name_template.format('os'),'w')
w_handle = self.w_handle = File(name_template.format('w'),'w')
mu_handle = self.mu_handle = File(name_template.format('mu'),'w')
sigma_handle = self.sigma_handle = File(name_template.format('sigma'),'w')
## Mu generation
mu = self.mu = self._generate_mu(x)
self.neurons = mu.shape[0]
print('({} neurons)'.format(self.neurons))
# Save to HDF5
mu_h5 = mu_handle.create_dataset('mu',data = mu)
## Sigma calculation
print('Calculating Sigma...')
sigmas = self.sigmas = self._calculate_sigmas()
# Save to HDF5
sigmas_h5 = sigma_handle.create_dataset('sigmas',data = sigmas)
print('Done')
## Phi calculation
print('Calculating Phi...')
phi = self.phi = self._calculate_phi(x)
print('Done')
# Saving to HDF5
print('Serializing...')
phi_h5 = phi_handle.create_dataset('phi',data = phi)
del phi
self.phi = phi_h5
print('Done')
## Algebra
print('Doing final algebra...')
w,os = self.w,_ = self._do_algebra(y)
# Saving to HDF5
w_h5 = w_handle.create_dataset('w',data = w)
os_h5 = os_handle.create_dataset('os',data = os)
## Calculate error
self._calculate_error(y)
print('Done')
def predict(self,test_data):
mu = self.mu = self.mu.value
sigmas = self.sigmas = self.sigmas.value
w = self.w = self.w.value
print('Calculating phi for test data...')
phi = self._calculate_phi(test_data)
os = dot(w,transpose(phi))
savetxt('iok3834.txt',os,delimiter='n')
return os
@property
def summary(self):
return 'n'.join(
['-----------------','Training set size: {}'.format(self.n),'Hidden layer size: {}'.format(self.neurons),'-----------------','Absolute error : {:02.2f}'.format(self.error),'Relative error : {:02.2f}%'.format(self.relative_error * 100)])
def predict(test_data):
mu = File('rbf-mu-212243-2400.hdf5','r')['mu'].value
sigmas = File('rbf-sigma-212243-2400.hdf5','r')['sigmas'].value
w = File('rbf-w-212243-2400.hdf5','r')['w'].value
n = test_data.shape[0]
neur = mu.shape[0]
mu = transpose(mu)
mu.reshape((n,neur))
phi = zeros((n,neur))
for i in range(n):
for j in range(neur):
phi[i,j] = multiQuadric(test_data[i,sigmas[j])
os = dot(w,transpose(phi))
savetxt('iok3834.txt',delimiter='n')
return os
更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数据结构与算法教程》、《Python编码操作技巧总结》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程》 希望本文所述对大家Python程序设计有所帮助。 您可能感兴趣的文章:
(编辑:安卓应用网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |
