计算pytorch标准化(Normalize)所需要数据集的均值和方差实例
发布时间:2020-05-24 23:04:31 所属栏目:Python 来源:互联网
导读:计算pytorch标准化(Normalize)所需要数据集的均值和方差实例 pytorch做标准化利用transforms.Normalize(mean_vals, std_vals),其中常用数据集的均值方差有: if coco in args.dataset: mean_vals = [0.471, 0.448, 0.408] std_vals = [0.234, 0.239, 0.242] el
|
pytorch做标准化利用transforms.Normalize(mean_vals,std_vals),其中常用数据集的均值方差有: if 'coco' in args.dataset: mean_vals = [0.471,0.448,0.408] std_vals = [0.234,0.239,0.242] elif 'imagenet' in args.dataset: mean_vals = [0.485,0.456,0.406] std_vals = [0.229,0.224,0.225] 计算自己数据集图像像素的均值方差:
import numpy as np
import cv2
import random
# calculate means and std
train_txt_path = './train_val_list.txt'
CNum = 10000 # 挑选多少图片进行计算
img_h,img_w = 32,32
imgs = np.zeros([img_w,img_h,3,1])
means,stdevs = [],[]
with open(train_txt_path,'r') as f:
lines = f.readlines()
random.shuffle(lines) # shuffle,随机挑选图片
for i in tqdm_notebook(range(CNum)):
img_path = os.path.join('./train',lines[i].rstrip().split()[0])
img = cv2.imread(img_path)
img = cv2.resize(img,(img_h,img_w))
img = img[:,:,np.newaxis]
imgs = np.concatenate((imgs,img),axis=3)
# print(i)
imgs = imgs.astype(np.float32)/255.
for i in tqdm_notebook(range(3)):
pixels = imgs[:,i,:].ravel() # 拉成一行
means.append(np.mean(pixels))
stdevs.append(np.std(pixels))
# cv2 读取的图像格式为BGR,PIL/Skimage读取到的都是RGB不用转
means.reverse() # BGR --> RGB
stdevs.reverse()
print("normMean = {}".format(means))
print("normStd = {}".format(stdevs))
print('transforms.Normalize(normMean = {},normStd = {})'.format(means,stdevs))
以上这篇计算pytorch标准化(Normalize)所需要数据集的均值和方差实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。 (编辑:安卓应用网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |
