加入收藏 | 设为首页 | 会员中心 | 我要投稿 安卓应用网 (https://www.0791zz.com/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 编程开发 > Python > 正文

一个非常高效的提取内容关键词的python代码

发布时间:2020-05-25 00:02:49 所属栏目:Python 来源:互联网
导读:一个非常高效的提取内容关键词的python代码

下面是脚本之家 jb51.cc 通过网络收集整理的代码片段。

脚本之家小编现在分享给大家,也给大家做个参考。

# coding=UTF-8
import nltk
from nltk.corpus import brown
  
# This is a fast and simple noun phrase extractor (based on NLTK)
# Feel free to use it,just keep a link back to this post
# http://thetokenizer.com/2013/05/09/efficient-way-to-extract-the-main-topics-of-a-sentence/
# Create by Shlomi Babluki
# May,2013
  
  
# This is our fast Part of Speech tagger
#############################################################################
brown_train = brown.tagged_sents(categories='news')
regexp_tagger = nltk.RegexpTagger(
    [(r'^-?[0-9]+(.[0-9]+)?$','CD'),(r'(-|:|;)$',':'),(r''*$','MD'),(r'(The|the|A|a|An|an)$','AT'),(r'.*able$','JJ'),(r'^[A-Z].*$','NNP'),(r'.*ness$','NN'),(r'.*ly$','RB'),(r'.*s$','NNS'),(r'.*ing$','VBG'),(r'.*ed$','VBD'),(r'.*','NN')
])
unigram_tagger = nltk.UnigramTagger(brown_train,backoff=regexp_tagger)
bigram_tagger = nltk.BigramTagger(brown_train,backoff=unigram_tagger)
#############################################################################
  
  
# This is our semi-CFG; Extend it according to your own needs
#############################################################################
cfg = {}
cfg["NNP+NNP"] = "NNP"
cfg["NN+NN"] = "NNI"
cfg["NNI+NN"] = "NNI"
cfg["JJ+JJ"] = "JJ"
cfg["JJ+NN"] = "NNI"
#############################################################################
  
  
class NPExtractor(object):
  
    def __init__(self,sentence):
        self.sentence = sentence
  
    # Split the sentence into singlw words/tokens
    def tokenize_sentence(self,sentence):
        tokens = nltk.word_tokenize(sentence)
        return tokens
  
    # Normalize brown corpus' tags ("NN","NN-PL","NNS" > "NN")
    def normalize_tags(self,tagged):
        n_tagged = []
        for t in tagged:
            if t[1] == "NP-TL" or t[1] == "NP":
                n_tagged.append((t[0],"NNP"))
                continue
            if t[1].endswith("-TL"):
                n_tagged.append((t[0],t[1][:-3]))
                continue
            if t[1].endswith("S"):
                n_tagged.append((t[0],t[1][:-1]))
                continue
            n_tagged.append((t[0],t[1]))
        return n_tagged
  
    # Extract the main topics from the sentence
    def extract(self):
  
        tokens = self.tokenize_sentence(self.sentence)
        tags = self.normalize_tags(bigram_tagger.tag(tokens))
  
        merge = True
        while merge:
            merge = False
            for x in range(0,len(tags) - 1):
                t1 = tags[x]
                t2 = tags[x + 1]
                key = "%s+%s" % (t1[1],t2[1])
                value = cfg.get(key,'')
                if value:
                    merge = True
                    tags.pop(x)
                    tags.pop(x)
                    match = "%s %s" % (t1[0],t2[0])
                    pos = value
                    tags.insert(x,(match,pos))
                    break
  
        matches = []
        for t in tags:
            if t[1] == "NNP" or t[1] == "NNI":
            #if t[1] == "NNP" or t[1] == "NNI" or t[1] == "NN":
                matches.append(t[0])
        return matches
  
  
# Main method,just run "python np_extractor.py"
def main():
  
    sentence = "Swayy is a beautiful new dashboard for discovering and curating online content."
    np_extractor = NPExtractor(sentence)
    result = np_extractor.extract()
    print "This sentence is about: %s" % ",".join(result)
  
if __name__ == '__main__':
    main()

以上是脚本之家(jb51.cc)为你收集整理的全部代码内容,希望文章能够帮你解决所遇到的程序开发问题。

如果觉得脚本之家网站内容还不错,欢迎将脚本之家网站推荐给程序员好友。

(编辑:安卓应用网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    推荐文章
      热点阅读