python – 深度学习Udacity课程:Prob 2作业1(不是MNIST)
|
阅读 this并参加课程后,我正在努力解决作业1( notMnist)中的第二个问题:
这是我尝试过的: import random
rand_smpl = [ train_datasets[i] for i in sorted(random.sample(xrange(len(train_datasets)),1)) ]
print(rand_smpl)
filename = rand_smpl[0]
import pickle
loaded_pickle = pickle.load( open( filename,"r" ) )
image_size = 28 # Pixel width and height.
import numpy as np
dataset = np.ndarray(shape=(len(loaded_pickle),image_size,image_size),dtype=np.float32)
import matplotlib.pyplot as plt
plt.plot(dataset[2])
plt.ylabel('some numbers')
plt.show()
但这就是我得到的: 这没有多大意义.说实话,我的代码也可能,因为我不确定如何解决这个问题! 泡菜是这样创建的: image_size = 28 # Pixel width and height.
pixel_depth = 255.0 # Number of levels per pixel.
def load_letter(folder,min_num_images):
"""Load the data for a single letter label."""
image_files = os.listdir(folder)
dataset = np.ndarray(shape=(len(image_files),dtype=np.float32)
print(folder)
num_images = 0
for image in image_files:
image_file = os.path.join(folder,image)
try:
image_data = (ndimage.imread(image_file).astype(float) -
pixel_depth / 2) / pixel_depth
if image_data.shape != (image_size,image_size):
raise Exception('Unexpected image shape: %s' % str(image_data.shape))
dataset[num_images,:,:] = image_data
num_images = num_images + 1
except IOError as e:
print('Could not read:',image_file,':',e,'- it's ok,skipping.')
dataset = dataset[0:num_images,:]
if num_images < min_num_images:
raise Exception('Many fewer images than expected: %d < %d' %
(num_images,min_num_images))
print('Full dataset tensor:',dataset.shape)
print('Mean:',np.mean(dataset))
print('Standard deviation:',np.std(dataset))
return dataset
这个函数的调用方式如下: dataset = load_letter(folder,min_num_images_per_class)
try:
with open(set_filename,'wb') as f:
pickle.dump(dataset,f,pickle.HIGHEST_PROTOCOL)
这里的想法是:
解决方法这样做如下:#define a function to conver label to letter
def letter(i):
return 'abcdefghij'[i]
# you need a matplotlib inline to be able to show images in python notebook
%matplotlib inline
#some random number in range 0 - length of dataset
sample_idx = np.random.randint(0,len(train_dataset))
#now we show it
plt.imshow(train_dataset[sample_idx])
plt.title("Char " + letter(train_labels[sample_idx]))
您的代码实际上更改了数据集的类型,它不是大小的数组(220000,28,28) 通常,pickle是一个保存一些对象的文件,而不是数组本身.您应该直接使用pickle中的对象来获取您的火车数据集(使用代码段中的符号): #will give you train_dataset and labels train_dataset = loaded_pickle['train_dataset'] train_labels = loaded_pickle['train_labels'] 更新: 根据@gsarmas的请求,我整个Assignment1解决方案的链接是here. 代码被注释并且大部分都是不言自明的,但是如果有任何问题可以通过github上的任何方式随意联系 (编辑:安卓应用网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |
