如何为sklearn CountVectorizer设置自定义停用词?
发布时间:2020-05-29 12:17:09 所属栏目:Python 来源:互联网
导读:我正在尝试在非英语文本数据集上运行LDA(Latent Dirichlet Allocation). 从sklearn的教程中,您可以在此部分中计算要提供给LDA的单词的术语频率: tf_vectorizer = CountVectorizer(max_df=0.95, min_df=2, max_features=n_features,
|
我正在尝试在非英语文本数据集上运行LDA(Latent Dirichlet Allocation). 从sklearn的教程中,您可以在此部分中计算要提供给LDA的单词的术语频率: tf_vectorizer = CountVectorizer(max_df=0.95,min_df=2,max_features=n_features,stop_words='english') 其中有内置停用词功能,我认为只适用于英语.我怎么能用这个我自己的停用词列表呢? 解决方法您可以将自己的单词的冻结集分配给stop_words argument,例如:
stop_words = frozenset(["word1","word2","word3"]) (编辑:安卓应用网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |
