加入收藏 | 设为首页 | 会员中心 | 我要投稿 安卓应用网 (https://www.0791zz.com/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 综合聚焦 > 服务器 > Ubuntu > 正文

Ubuntu 16.04卸载CUDA 6.5和安装CUDA 8.0

发布时间:2020-05-22 18:58:04 所属栏目:Ubuntu 来源:互联网
导读:一,引言 由于系统从Ubuntu 14.04升级到了16.04,原来的CUDA 6.5无法继续使用,所以重新安装了CUDA 8.0。 二,卸载CUDA 6.5 和驱动 以下操作都在命令行界面操作,比如按下Ctrl+alt+F1进入命令行 首先停止lightdm: sudo service lightdm stop 卸载NVIDIA驱动

一,引言

由于系统从Ubuntu 14.04升级到了16.04,原来的CUDA 6.5无法继续使用,所以重新安装了CUDA 8.0。

二,卸载CUDA 6.5 和驱动

以下操作都在命令行界面操作,比如按下Ctrl+alt+F1进入命令行
首先停止lightdm:
sudo service lightdm stop

卸载NVIDIA驱动

原来安装CUDA 6.5的时候一起安装了 NVIDIA驱动,首先卸载掉,命令一般是:

 
 
  • 1
sudo /usr/bin/nvidia-uninstall

如果找不到命令,可以在命令行下直接输入:

 
 
  • 1
sudo apt-get install autoremove --purge nvidia*

卸载CUDA toolkit

CUDA默认安装在 /usr/local/cuda-6.5下,用下面的命令卸载:

 
 
  • 1
sudo /usr/local/cuda-6.5/bin/uninstall_cuda-6.5.pl

此时一般需要重启一下

三, 安装CUDA 8.0

首先下载CUDA安装文件,网址:https://developer.nvidia.com/cuda-release-candidate-download
需要注册NVIDIA的开发者账号。根据电脑的系统下载对应的安装文件,这里下载的是CUDA 8.0的runfile(local)文件。安装方法可以按照官方安装指南:http://docs.nvidia.com/cuda/cuda-installation-guide-linux/#axzz4HIBXnwyt

依旧进入命令行界面,然后还是

 
 
  • 1
sudo service lightdm stop

执行下面语句,运行runfile文件:

 
 
  • 1
sudo sh cuda_8.0.44_linux.run

会有一系列的安装选项,比如是否安装NVIDIA367驱动等,由于之前卸载了NVIDAI驱动,所以这里选择了安装,其他还有比如是否安装samples以及安装目录等。
安装完成后会出现以下界面:

============ Summary ============Driver: Not SelectedToolkit: Installed in /usr/local/cuda-8.0Samples: Installed in /home/textminerPlease make sure that– PATH includes /usr/local/cuda-8.0/bin– LD_LIBRARY_PATH includes /usr/local/cuda-8.0/lib64,or,add /usr/local/cuda-8.0/lib64 to /etc/ld.so.conf and run ldconfig as rootTo uninstall the CUDA Toolkit,run the uninstall script in /usr/local/cuda-8.0/binPlease see CUDA_Installation_Guide_Linux.pdf in /usr/local/cuda-8.0/doc/pdf for detailed information on setting up CUDA.***WARNING: Incomplete installation! This installation did not install the CUDA Driver. A driver of version at least 361.00 is required for CUDA 8.0 functionality to work.To install the driver using this installer,run the following command,replacing with the name of this run file:sudo .run -silent -driverLogfile is /opt/temp//cuda_install_6583.log

然后设置环境变量和动态链接库,在/etc/profile文件中添加:

 
 
  • 1
  • 2
export PATH = /usr/local/cuda-8.0/bin:$PATH export LD_LIBRARY_PATH=/usr/local/cuda-8.0/lib64:$LD_LIBRARY_PATH

之后再

 
 
  • 1
source /etc/profile

可以使改变立即生效

测试
如果安装了CDUA samples可以运行一下以测试CUDA是否能成功运行。
进入sample的目录,CUDA 8.0的默认安装目录变成了用户主目录,会有一个NVIDA_CUDA-8.0_Samples的目录,里面有Makefile文件,直接make就行,一般需要编译一段比较长的时间。之后就可以在当前目录的bin目录中随意运行一些程序,以验证CUDA是否正确安装,比如deviceQuery程序的运行结果:

 
 
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
./deviceQuery Starting... CUDA Device Query (Runtime API) version (CUDART static linking) Detected 1 CUDA Capable device(s) Device 0: "GeForce GTX 980 Ti" CUDA Driver Version / Runtime Version 8.0 / 8.0 CUDA Capability Major/Minor version number: 5.0 Total amount of global memory: 1999 MBytes (2095841280 bytes) ( 5) Multiprocessors,(128) CUDA Cores/MP: 640 CUDA Cores GPU Max Clock rate: 1084 MHz (1.08 GHz) Memory Clock rate: 2700 Mhz Memory Bus Width: 128-bit L2 Cache Size: 2097152 bytes Maximum Texture Dimension Size (x,y,z) 1D=(65536),2D=(65536,65536),3D=(4096,4096,4096) Maximum Layered 1D Texture Size,(num) layers 1D=(16384),2048 layers Maximum Layered 2D Texture Size,(num) layers 2D=(16384,16384),2048 layers Total amount of constant memory: 65536 bytes Total amount of shared memory per block: 49152 bytes Total number of registers available per block: 65536 Warp size: 32 Maximum number of threads per multiprocessor: 2048 Maximum number of threads per block: 1024 Max dimension size of a thread block (x,z): (1024,1024,64) Max dimension size of a grid size (x,z): (2147483647,65535,65535) Maximum memory pitch: 2147483647 bytes Texture alignment: 512 bytes Concurrent copy and kernel execution: Yes with 1 copy engine(s) Run time limit on kernels: Yes Integrated GPU sharing Host Memory: No Support host page-locked memory mapping: Yes Alignment requirement for Surfaces: Yes Device has ECC support: Disabled Device supports Unified Addressing (UVA): Yes Device PCI Domain ID / Bus ID / location ID: 0 / 1 / 0 Compute Mode: < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) > deviceQuery,CUDA Driver = CUDART,CUDA Driver Version = 8.0,CUDA Runtime Version = 8.0,NumDevs = 1,Device0 = GeForce GTX 750 Ti Result = PASS

参考

http://www.th7.cn/system/lin/201608/176823.shtml blog.csdn.net/xulingqiang/article/details/46660107

(编辑:安卓应用网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    推荐文章
      热点阅读